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ABSTRACT
To cope with the large amount of biological sequences being
produced, a significant number of genes and proteins have
been annotated by automated tools. A protein annotation
is an association between a protein and a term describing
its role. These tools have produced a significant number of
misannotations that are now present in biological databases.
This paper proposes a new method for automatically scor-
ing associations by comparing them to preexisting curated
associations. An association is a pair that links two enti-
ties. The score can be used to filter incorrect or uncommon
associations.

We evaluated the method using the automated protein anno-
tations submitted to BioCreAtIvE, an international evalua-
tion of state-of-the-art text-mining systems in Biology. The
method scored each of these annotations and those scored
below a certain threshold were discarded. The results have
shown a small trade-off in recall for a large improvement
in precision. For example, we were able to discard 44.6%,
66.8% and 81% of the misannotations, maintaining 96.9%,
84.2%, and 47.8% of the correct annotations, respectively.
Moreover, we were able to outperform each individual sub-
mission to BioCreAtIvE by proper adjustment of the thresh-
old.
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H.2.8 [Information Systems]: Database ManagementDatabases
applications[Data Mining]; J.3 [Life and Medical Sci-
ences]: Biology and genetics
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Algorithms, Experimentation

Keywords
Knowledge management, Biological databases, Filtering as-
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1. INTRODUCTION
The large amount of data available nowadays has trans-
formed the traditional way of conducting scientific work.
However, the data generated is not always accurate and de-
tecting errors and inconsistencies in the databases is an ex-
pensive and arduous task. For example, traditional func-
tional characterisation of genes and proteins cannot cope
with the large amount of sequences being produced. There-
fore, a significant number of genes and proteins have been
functionally characterised by automated tools, which ex-
trapolate functional annotations from similar sequences. How-
ever, these tools have also produced a significant number of
misannotations that are now present in the databases [16].
Some of these tools have been extrapolating new annotations
from misannotations and are therefore spreading the errors.
This happens because most databases do not distinguish
between extrapolated and curated annotations. Functional
characterisation is not normally linked to the experimental
evidence that substantiates it, which makes it difficult to
judge if it is correct.

This paper proposes a new approach to validate uncurated
associations. An association is a pair that links two members
of two entities. The proposed approach compares each mem-
ber of the association with the members of known curated
associations. The underlying intuition is that uncurated as-
sociations having similar curated associations should also be
correct. The intuition is motivated by the observation of the
manual annotation technique adopted by biological curators,
which consists in using preexisting curated information as a
guide to evaluate uncurated biological data [8].

We applied the proposed approach to automatically filter
protein misannotations by developing CAC (Correlate the
Annotations’ Components), a novel heuristic method that
scores uncurated annotations. A protein annotation is an
association between a protein and a term describing its role.
CAC requires minimal human intervention, since it takes
advantage of publicly available domain knowledge, i.e. pre-
viously curated annotations, to score each uncurated anno-
tation. CAC avoids the complexities of creating rules and
patterns covering all possible cases or creating training sets
that are too specific to be extended to new domains [29]. Be-
sides avoiding direct human intervention, automatically col-
lected domain knowledge is usually much larger than manu-
ally generated domain knowledge and does not become out-
dated, since public databases can be tracked for updates as



they evolve [10].

An example scenario where automated annotation systems
produced a significant number of misannotations was BioCre-
AtIvE (Critical Assessment of Information Extraction sys-
tems in Biology) [22]. We applied CAC to all the anno-
tations submitted to BioCreAtIvE, and CAC was able to
obtain a good accuracy by discarding a significant number
of these misannotations. The results obtained by CAC in
this task demonstrate the efficiency and feasibility of the
proposed approach.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces the Gene Ontology. Section 3 describes
BioCreAtIvE and discusses the results obtained by its par-
ticipants. Section 4 describes CAC in detail. Section 5
presents the experimental evaluation of CAC using the an-
notations submitted to BioCreAtIvE. Section 6 discusses the
obtained results. Finally, Section 7 expresses our main con-
clusions.

2. GENE ONTOLOGY
Biological databases annotate genes or proteins with state-
ments that describe their biological role. Sometimes, these
annotations are stored as ambiguous statements that are do-
main specific and context dependent. To cope with this, the
research community is developing and using BioOntologies
to annotate genes and proteins [30]. Using a BioOntology
to annotate genes or proteins avoids ambiguous statements
that are domain specific and context dependent.

For example, the GO (Gene Ontology) is a well-established
structured vocabulary that for example has been success-
fully used for gene annotation of different species [18]. The
GO project is one of the major efforts in Molecular Biology,
for constructing a BioOntology of broad scope and wide ap-
plicability. GO provides a structured controlled vocabulary
of gene and protein biological roles, which can be applied to
different species. GO comprised 20,069 distinct terms in De-
cember 2005. Since the activity or function of a protein can
be defined at different levels, GO has three different aspects:
molecular function, biological process and cellular compo-
nent. Each protein has elementary molecular functions that
normally are independent of the environment, such as cat-
alytic or binding activities. Sets of proteins interact and are
involved in cellular processes, such as metabolism, signal
transduction or RNA processing. Proteins can act in differ-
ent cellular localisations, such as the nucleus or membrane.

GO organises the concepts as a DAG (Directed Acyclic Graph),
one for each aspect. Each node of the graph represents a
concept, and the edges represent the links between concepts
(see example in Figure 1). Links can represent two relation-
ship types: is-a and part-of. GO is a dynamic hierarchy: its
content changes every month with the publication of a new
release. Any user can request modifications to GO, which
is maintained by a group of curators who add, remove and
change terms and their relationships in response to modifi-
cation requests. This prevents GO from becoming outdated
and from providing incorrect information.

GO started by adding generic terms and simple relationships
to provide a complete coverage of the Molecular Biology do-
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Figure 1: Sub-graph of GO.

main. Thus, the main limitation of GO is the lack of spe-
cific terms that, for example, represent precise biochemical
reactions. However, as different research communities un-
derstand the importance of adding their domain knowledge
to GO, it will acquire more specific terms and relationships
and therefore overcome this limitation.

Many databases are using GO terms to annotate their pro-
teins. For example, the GOA (Gene Ontology Annotation)
database provides GO annotations to supplement the UniProt
(Universal Protein Resource) [8]. UniProt is a universal
repository of protein sequence and functional data [2]. GOA
provides high-quality manual GO annotations, but manual
curation is a time-consuming task that currently covers less
than 5% of UniProt. The manual processing capacity for
gene and protein characterisation is overloaded by the in-
creasingly larger amounts of literature to analyse. Thus,
the GOA database mainly consists of uncurated annotations
that have a lower quality than manual annotations.

3. BIOCREATIVE
A large amount of the information discovered in Molecu-
lar Biology has been mainly published in BioLiterature (a
shorter designation for the biological and biomedical scien-
tific literature). Analysing and identifying information in a
large collection of unstructured texts is a painful and hard
task, even to an expert. To improve the access to the in-
formation, most researchers also deposit their findings in a
structured form in databases, such as UniProt, which collect
and distribute biological information. However, the manage-
ment of these databases also became a complex problem, and
most of them contain a significant number of errors. More-
over, most facts are only valid in a specific biological set-
ting, and should not be directly extrapolated to other cases.
Therefore, researchers cannot only rely in the facts available
in these databases, they also need the evidence substantiat-
ing the facts, which is normally present in the BioLiterature.
The evidence text can be the description of the biological
setting where the experiment was conducted or the subse-
quent discussion of the results. In addition, different re-
search communities have different needs and requirements at
a given period in time. As these constraints evolve, its man-



Participant Approach
Ehrler et al. [17] Sequentially applied finite state automata
Couto et al. [13] Information content of terms

Verspoor et al. [31] Word proximity networks
Rice et al. [28] Term-based SVM
Ray et al. [25] Statistical learning and Näıve Bayes method

Chiang et al. [9] Pattern matching and Sentence classification

Table 1: Participants of the subtask 2.2 of BioCreAtIvE and their approaches.

agement becomes harder to fulfil by databases, which have
a static structure. Thus, researchers tend to use databases
as an additional source to store and find facts, but the evi-
dence substantiating them is still described as unstructured
text, given its higher flexibility. As a consequence, a large
amount of the knowledge acquired in Molecular Biology can
only be found in the BioLiterature.

An approach to improve the access to the knowledge pub-
lished in BioLiterature is to use Text Mining, which aims at
automatically extracting knowledge from natural language
text [20]. The application of text-mining tools to BioLitera-
ture started just a few years ago [1]. Since then, the interest
in the topic has been steadily increasing, motivated by the
vast amount of documents that curators have to read to up-
date biological databases, or simply to help researchers keep
up with progress in a specific area [11]. Thus, bioinformat-
ics tools are increasingly using Text Mining to collect more
information about the concepts they analyse. Text-mining
tools have mainly been used to identify: entities, such as
genes, proteins and cellular components; relationships, such
as protein localisation or protein interactions; events, such
as experimental methods used to discover protein interac-
tions.

An important application of text-mining tools is the auto-
matic annotation of genes and proteins. A gene or protein
annotation consists of a pair composed by the gene or pro-
tein and a description of its biological role. The biological
role is often a concept from a BioOntology (e.g. GO). Using
a BioOntology to annotate genes or proteins avoids ambigu-
ous statements that are domain specific and context depen-
dent. To understand the activity of a gene or protein, it
is also important to know the biological entities that inter-
act with it. Thus, the annotation of a gene or protein also
involves identifying interacting chemical substances, drugs,
genes and proteins.

Most of the manual annotation process done by the GOA
team involves analysing the literature, which is a painful
and hard task, even to an expert. Thus, the GOA team
accepted to take part in BioCreAtIvE, to access the ability
of text mining-systems for assisting curators in the annota-
tion of UniProt proteins to GO terms. BioCreAtIvE was
a challenging evaluation that compared the performance of
different text-mining systems in solving common tasks using
the same corpus. The tasks addressed meaningful challenges
for text-mining systems and at the same time real problems
of Biology. The biologically realistic scenarios posed addi-
tional difficulties for the participants, which resulted in less
successful performances than to the ones obtained in the
Genomics TREC 2004, a similar challenging evaluation [21].

The subtask 2.2 of BioCreAtIvE aimed at predicting GO an-
notations to human proteins from 200 new full-text articles
from the Journal of Biological Chemistry. Table 1 shows the
participants of this subtask and the approaches used. Each
participant could submit three different sets of predictions
to test the parameters of his system. Overall, there were 18
sets of submitted annotations that were individually evalu-
ated.

For each scientific article, the participants had to submit the
list of annotations predicted by their system and evidence
text for each annotation. Three curators of the GOA team
manually evaluated each predicted annotation and respec-
tive evidence [7]. They evaluated if the predicted GO term
assignment was correct, or close to what a curator would
choose. Sometimes, the GO term was in the correct lineage,
but the curators considered it as incorrect because it was too
generic or too specific. The GOA team considered a submis-
sion correct when it contained both a correct annotation and
a valid evidence text substantiating it.

The predictions submitted to this subtask achieved unac-
ceptable levels of accuracy. The participant with the best
accuracy identified 6% of all the correct annotations found
by all the participants, and only 35% of his predictions were
correct. The task addressed by BioCreAtIvE is representa-
tive of the complexities that have to be faced in real bio-
logical research environments. Without improvements, such
automated systems are unhelpful to curators [26]. There-
fore, techniques that could achieve good solutions to validate
the automated annotations and improve their accuracy are
much needed.

4. CAC
CAC assumes that an annotation is correct when there is at
least a preexisting curated annotation composed by a similar
gene (or protein) and a similar property. CAC considers an
annotation as a pair (g, p), where g is a gene (or a protein)
and p a biological property. For example, the annotations
submitted to BioCreAtIvE were composed by a UniProt pro-
tein and a GO term that are instances of gene and property,
respectively.

Algorithm 1 outlines CAC, which assigns a confidence score
to apredicted, an annotation predicted by an automated sys-
tem given as input. CAC also receives as input Acurated, a
set of preexisting curated annotations collected from public
databases, e.g. GOA.

CAC starts by assigning a zero confidence score to the pre-
dicted annotation (line 1). Next, CAC collects all the genes
in the set of curated annotations (line 3). For each curated



Algorithm 1 CAC

Input: apredicted, an uncurated annotation predicted by an
automated system;
Acurated, set of previously curated annotations.

Output: confidence ∈ [0, +∞], confidence score of the pre-
dicted annotation.

1: confidence(apredicted) = 0
2: (gpredicted, ppredicted) = apredicted

3: Gcurated = {g : ∃p (g, p) ∈ Acurated}
4: for all gcurated ∈ Gcurated do
5: Pcurated = {p : (gcurated, p) ∈ Acurated}
6: geneSim = geneSim(gpredicted, gcurated)
7: propSim =P

pcurated∈Pcurated
propSim(ppredicted, pcurated)

8: confidence(apredicted) + = geneSim× propSim
9: end for

10: SG = similarGenes(gpredicted,Gcurated)

11: confidence(apredicted) =
confidence(apredicted)

SG

gene, CAC collects the properties annotated to it (line 5).
Next, CAC calculates the similarity between the curated and
the predicted genes (line 6), and calculates the similarity be-
tween the predicted property and each property annotated
to the curated gene (line 7). CAC increments the confidence
of the predicted annotation by the product of the gene simi-
larity and the sum of all property similarities (line 8). Thus,
the confidence only increases if both the gene similarity and
at least one property similarity are larger than zero, i.e., if
they are similar genes and have been annotated with at least
one similar property.

However, theAcurated set can contain groups of similar genes
that are over-represented. In this case, the predicted anno-
tations that contain genes with a large number of similar
curated genes will tend to have higher confidence scores.
To overcome this problem, CAC calculates the number of
curated genes similar to the predicted gene (line 10), and
employs it as a damping factor (line 11). This factor re-
duces the effect of the amount of similar curated genes in
the confidence score calculation.

CAC returns a confidence score of apredicted being correct.
To filter the annotations predicted by an automated system,
CAC scores each predicted annotation and discards those
scored below a confidence threshold (CT ). CAC is able to
trade precision against recall by manipulating CT . Raising
CT increases precision and decreases recall, lowering CT has
the opposite effect.

CAC cannot score annotations without similar curated an-
notations. When the given predicted annotation has no sim-
ilar curated genes (SG = 0), CAC assigns a confidence score
of +∞ to it. This means that the predicted annotation will
never be filtered independently of the threshold used. There-
fore, CAC does not discard new knowledge; instead, it gives
the curators the opportunity to manually verify these po-
tentially novel annotations.

4.1 Gene Similarity
The most popular way to calculate the similarity between
two genes is by comparing their sequence [3]. However, se-

quence similarity is not the only kind of structural similarity
that can be computed between two proteins. Family sim-
ilarity is also a structural similarity of a higher level than
sequence similarity. Each family describes a set of related
proteins, which can have identical molecular functions, are
involved in the same process, or act in the same cellular
location. Classifying proteins in families has been a com-
mon technique to organise them according to their biologi-
cal role. For example, the most successful large-scale effort
for increasing the coverage of GO annotations within the
UniProt database is based on the exploitation of family an-
notations [8]. Unlike standard sequence similarity methods,
family categorisation is normally based on experimental re-
sults about protein domains, which represent some evolu-
tionarily conserved structure and have implications on the
protein’s biological role.

geneSim was calculated from the number of shared Pfam
families. Pfam is a database that provides a set of protein
domains and families [4]. These families are constructed
semi-automatically using hidden Markov models (HMMs).
Each family describes a set of related proteins that can have
identical molecular functions, are involved in the same pro-
cess, or act in the same cellular location. This database
contained 8183 families in December 2005. The UniProt
database provides family assignments, where each protein
is assigned to a set of Pfam families. This calculation can
be improved by taking in account the sequence related to
each Pfam family. For example, the length of the sequence
and the percentage of similarity may constitute important
factors to calculate the geneSim function. Apart from the
sequence the geneSim could also use other type of informa-
tion, e.g. gene expression profiles and evolutionary profiles.

4.2 Property Similarity
CAC assumes that two properties are similar if one of them
subsumes the other or if they have a common parent in
the functional classification scheme, e.g. GO. To calculate
the degree of similarity between properties, CAC can use
a semantic similarity measure that combines the structure
and content of a BioOntology with statistical information
from corpus [27]. Recent projects investigated the use of
semantic similarity measures over GO [14, 15, 24]. Their
results demonstrated the feasibility of a semantic similarity
measure in a biological setting.

propSim was calculated using the measure proposed by Jiang&Conrath,
which is one of the most efficient semantic similarity mea-
sures [6, 23]. Jiang&Conrath defined the semantic distance
of two concepts in a corpus as the difference between their
information content and the information content of their
most informative common ancestor. The information con-
tent of a concept is inversely proportional to its frequency in
the corpus. Concepts that are frequent in the corpus have
low information content. For example, the stop words (such
as the) that occur almost everywhere in the text normally
provide little semantic information. The information con-
tent of a GO term was calculated as the number of proteins
annotated with it. The ancestor of two GO terms having
the largest information content was considered the most in-
formative common ancestor of both terms.

4.3 Computational Performance



Set #annotations #proteins max(SG) min(SG) SG
Set-1 1135 30 583 5 223.7841
Set-2 1101 25 1762 613 1077.7221
Set-3 1049 22 11605 1855 3098.9790

Table 2: Statistics of the three sets of annotations created according to the number of similar curated
proteins per annotation (SG). The statistics include the number of annotations, the number of distinct
predicted proteins, and the maximum, minimum and average of SG for each set.

We implemented CAC as a Java/MySQL application [19].
The execution time of CAC is linearly proportional to the
number of curated annotations used, which makes it scal-
able. The performance of CAC is directly linked to the time
spent on the calculation of both geneSim and propSim.
geneSim can be implemented as a simple SQL query count-
ing the number of shared families, and therefore it is not
computational expensive. On the other hand, the calcula-
tion of propSim is more complex but it is also not computa-
tional expensive as it is demonstrated by FuSSiMeG (Func-
tional Semantic Similarity Measure between Gene-Products),
a web tool that measures the functional similarity between
proteins based on the semantic similarity of the GO terms
annotated to them [12]. FuSSiMeG is available on the Web1,
affording the similarity calculation on the fly.

4.4 Example
In the subtask 2.2 of BioCreAtIvE, the participants anno-
tated the protein Lipid phosphate phosphohydrolase 1 to the
GO terms membrane and mRNA metabolism [5]. However,
only the assignment of membrane is correct. Below the re-
sults obtained by CAC for these two annotations are de-
scribed.

The protein Lipid phosphate phosphohydrolase 1 belongs
to the PF01569 family. For the annotation of this pro-
tein to membrane, CAC found 91 curated proteins from
the PF01569 family (geneSim = 1) that were annotated
to similar GO terms (propSim > 0) in GOA. From these 91
proteins, 21 were annotated to the same term. For exam-
ple, the protein Lipid phosphate phosphohydrolase 2 belongs
to the PF01569 family (geneSim = 1) and is annotated
to membrane and integral to membrane, which results in
propSim = 1.445297776. The confidence score resulted from
these 91 proteins is 53.09, but since the PF01569 family con-
tains 630 proteins (SG = 629), CAC returned 53.09

639
≈ 0.08.

On the other hand, for the annotation of the protein Lipid
phosphate phosphohydrolase 1 to mRNA metabolism, CAC
only found one curated protein (HH1165 ) from the PF01569
family (geneSim = 1) that was annotated to a similar GO
term (metabolism) (propSim = 0.1) in GOA. Thus, in this
case CAC returned 0.1

639
≈ 0.0002.

5. ASSESSMENT
We tested CAC to find how effectively it could discard the
misannotations submitted to BioCreAtIvE independently of
their evidence text. CAC scored each submitted annota-
tion individually (apredicted), using the GOA annotations as
the curated set of annotations (Acurated). The annotations

1http://xldb.fc.ul.pt/rebil/tools/ssm/

submitted to BioCreAtIvE2 and the GOA3 annotations are
both publicly available on the Web. However, in the pub-
licly available information there is no reference to the author
of each annotation submitted to BioCreAtIvE. It is not even
possible to know which annotations were submitted by the
same system.

We decided not to increase the confidence of a predicted an-
notation based on curated annotations to the same protein,
i.e., the protein gpredicted was discarded from Gcurated. This
way, CAC was restricted to score each predicted annotation
based only on curated annotations to similar but distinct
proteins. This restriction ensures a fair evaluation of CAC
by checking if CAC copes with proteins having no previously
curated annotations.

The restriction increased the number of proteins for which it
was not possible to obtain similar proteins, i.e., having SG =
0. However, only 455 out of the 3740 predicted annotations
did not have a similar protein in the December 2004 release
of GOA. These novel annotations have a precision of 7%,
i.e., only 32 of them were correct. The assumption that
supports CAC is not applicable to these novel annotations,
thus scoring these annotations is out of CAC objectives.
CAC does not discard these annotations, since it assigns
an infinite score to them. Therefore, in the first part of
the evaluation these annotations were disregarded, but they
were included in the end to show the overall impact of CAC
on the curation process.

The 3285 annotations having SG > 0 assign 1239 distinct
GO terms to 77 UniProt proteins. The 77 proteins were
assigned to 87 distinct Pfam families with an average of
1.6 families per protein. These 87 families contained 64863
distinct proteins. Thus, each protein had 64863

87
× 1.6 =

1192.9 similar curated proteins on average.

To compare the performance of CAC when applied to over-
annotated or under-annotated proteins, the 3285 annota-
tions were divided in three different sets (Set-1, Set-2 and
Set-3 ) according to the number of similar curated proteins
(SG). Table 2 shows statistical information about each set.

5.1 Results
Each distinct confidence score was used as a confidence thresh-
old to obtain different subsets of the 3285 predicted anno-
tations. For each confidence threshold, the resulting sub-
set contains all the annotations with a confidence score not
below the threshold. For a zero confidence threshold, the

2http://www.pdg.cnb.uam.es/BioLINK/workshop
BioCreative 04/results/data/
3ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/
gene association.goa uniprot.gz

http://xldb.fc.ul.pt/rebil/tools/ssm/
http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/results/data/
http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/results/data/
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/gene_association.goa_uniprot.gz
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/gene_association.goa_uniprot.gz
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subset contains all the predicted annotations, since none of
them is discarded. As the confidence threshold increases,
the size of the subset decreases. For each subset, it was cal-
culated: the precision, representing the fraction of correct

annotations in the subset; the recall, representing the num-
ber of correct annotations in the subset over the number of
correct annotations in the original set; and the F-measure
= 2×precision×recall

precision+recall
, representing the trade-off between pre-
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Figure 2: Accuracy of the annotations retained by different confidence thresholds (CT ) after running CAC.
The All Proteins lines represent all the 3285 annotations. The Set 1 and Set 3 lines represent the annotations
with the smallest and the largest number of similar curated proteins, respectively. The Set-2 lines represent
all the other annotations not present in Set 1 and Set 3. The without CAC baselines represent the original
annotations without using CAC. In chart (a), the baseline shows the F-Measure when none of annotations
is filtered. In the other charts, the baselines assume a random model to filter the annotations, i.e., having a
constant precision for any filter rate.

cision and recall. Note that if we replace CAC by a random
model to filter the annotations, the precision would remain
constant. For instance, if we select at random 25% of the
annotations in the original set, it is predictable that the
selected annotations also contain 25% of the correct anno-
tations in the original set.

Only 227 out of the 3285 annotations submitted to BioCre-
AtIvE were considered correct, a precision of 6.9%. The real
recall is unknown, since the organisation of BioCreAtIvE did
not measure it. Thus, we can assume a recall of 100% for the
original set of annotations. Note that CAC cannot increase
recall. As a filter, it does not generate new annotations.

Figure 2(a) shows the F-measure for different confidence
thresholds. For confidence thresholds smaller than one, the
chart shows that the use of CAC to discard annotations
is beneficial by achieving a substantial improvement in F-
measure. The F-measure achieves its maximum value when
the confidence threshold is around 0.1. Figure 2(c) shows the
precision and recall obtained for different confidence thresh-
olds. With a few exceptions, we have a steadily increase in
precision as we increase the confidence threshold.

Table 3 shows the accuracy of the predicted annotations

when not using CAC (CT = 0), and the accuracy of the sub-
sets of annotations retained by different confidence thresh-
olds. Besides the precision, recall and F-measure, the Table
shows the number of correct and incorrect annotations that
were not discarded by CAC, and the percentage of misanno-
tations discarded by CAC from the original set. For exam-
ple, by using CT = 0.001 CAC discarded 50.8% ( 3058−1506

3058
)

of the misannotations, maintaining 96.5% ( 219
227

) of the cor-
rect annotations.

The confidence threshold has no biological meaning to cura-
tors. They simply would like to discard a given amount of
annotations to speedup the curation process without loosing
a significant part of valuable information. This can be done
by increasing CT until a defined filter rate is reached. The
filter rate means the percentage of annotations that are dis-
carded by CAC from the original set. For example, a filter
rate of 90% means that only 10% of the original annotations
were retained. Figure 2(b) shows the F-measure obtained by
CAC for different filter rates. The chart shows that the use
of CAC to discard annotations is beneficial by achieving a
steady improvement in F-measure as we increase the filter
rate, except for filter rates larger than 99% (CT > 1). Ta-
ble 4 shows the precision and the recall of the different sets
of annotations over different filter rates, together with the



CT Filter Rate #correct #incorrect Precision Recall F-measure Misannotations
Discarded

0 0% 227 3058 6.9% 100% 12.9% 0%
0.001 47.5% 219 1506 12.7% 96.5% 22.4% 50.8%
0.01 72% 186 733 20.2% 81.9% 32.5% 76%
0.1 90% 92 235 28.1% 40.5% 33.2% 92.3%
1 98.7% 39 4 90.7% 17.2% 28.9% 99.9%

Table 3: Results obtained by filtering the 3285 annotations using different confidence thresholds.

All Proteins
Filter Rate Precision Recall CT

0% 6.9% 100% 0
70% 19.3% 84.6% 0.008
80% 22.6% 67% 0.025
90% 27.3% 41% 0.094
95% 40.6% 29.5% 0.235

Set-1 Set-2 Set-3
Filter Rate Precision Recall CT Precision Recall CT Precision Recall CT

0% 7.5% 100% 0 7.4% 100% 0 5.8% 100% 0
70% 22.6% 90.6% 0.007 19.8% 81.5% 0.008 15.4% 82% 0.008
80% 27.3% 72.9% 0.028 23.3% 64.2% 0.028 18.4% 67.2% 0.018
90% 32.5% 47.1% 0.091 25.6% 38.3% 0.102 20.8% 36.1% 0.083
95% 40.6% 30.6% 0.263 40% 29.6% 0.243 30.4% 27.9% 0.162

Table 4: Results obtained by filtering the 3285 annotations using different filter rates.

selected CT in each set. The standard deviation of both
recall and precision is always smaller than 5% for the same
filter rate, even with a standard deviation of 0.8% in preci-
sion in the original sets. The selected CT is almost the same
in all sets, except in the Set-3 where in some cases CT is
about 1/3 smaller.

6. DISCUSSION
The increase in precision is already a positive result to GOA
curators, since they primarily require high precision in an
automated annotation system. In this experiment, CAC
increased precision at the cost of a low decrease in recall.
The trade-off between precision and recall is worth it, as it
is shown by the increase in the F-measure. This is always
true except for filter rates larger than 99% (CT > 1), be-
cause recall decreases and precision is not improved. For
such high confidence thresholds, there are still some mis-
annotations not discarded. For example, CAC assigned a
high confidence score to the annotation that assigns the GO
term kinase activity to the protein Sulfate transporter 1.2,
but this annotation is not in GOA. However, the GO term
protein kinase activity is annotated to the same protein in
GOA. Since the term kinase activity is a generalisation of
protein kinase activity, the predicted annotation is correct
but still not of interest to curators.

From 3058 misannotations, four remain with a confidence
threshold of one. These four annotations are not defined
in GOA because all of them assign generic GO terms to
proteins. This does not mean that they represent incor-
rect assignments, they are only too generic to be of interest
to curators. Since in reality these generic annotations are
correct, CAC does not discard these annotations even with
large confidence thresholds. This explains the sharp drop
in precision when recall is close to zero in Figure 2(c), be-

cause these generic annotations were considered incorrect in
our assessment. Thus, by considering generic annotations
as correct, the performance of CAC would increase, but this
would not reflect the curators’ interest for precise and spe-
cific annotations. Nevertheless, it is undesirable to discard
these generic annotations, since the evidence substantiating
them may be of interest to curators.

The participant of BioCreAtIvE who achieved the largest
precision predicted 41 annotations, 14 of which were cor-
rect. Using a confidence threshold of 1, CAC selected 43
annotations, 39 of which were correct. On the other hand,
the participant who achieved the largest recall predicted 661
annotations, 78 of which were correct. Using a confidence
threshold of 0.1, CAC selected 327 annotations, 92 of which
were correct. Therefore, by proper adjustment of the con-
fidence threshold we can use CAC to outperform each indi-
vidual submission to BioCreAtIvE.

For a small decrease in recall, CAC was able to obtain a large
improvement in precision, since annotations that clearly do
not satisfy the correlation between structure and function
are normally incorrect. Unfortunately, there are exceptions.
Using a confidence threshold of 0.001, CAC discarded 8 out
of 227 correct annotations. For these eight annotations,
CAC could not find similar annotations mainly because of
the restriction that discarded curated annotations to similar
but distinct proteins. When CAC was tested without this
restriction, 47% of the misannotations were discarded main-
taining all the correct annotations, i.e., a two-fold increase
in precision maintaining 100% recall. This restriction was
applied to ensure a fair evaluation of CAC. However, in a
real application setting, this restriction would not be applied
and therefore obtain a higher performance. It is expected
that, as the scientific community produces better classifica-



CT Filter Rate #correct #incorrect Precision Recall F-measure Misannotations
Discarded

0 0% 259 3481 6.9% 100% 13% 0%
0.001 41.7% 251 1929 11.5% 96.9% 20.6% 44.6%
0.01 63.3% 218 1156 15.9% 84.2% 26.7% 66.8%
0.1 79.1% 124 658 15.9% 47.8% 23.8% 81.0%
1 86.7% 71 427 14.3% 27.4% 18.8% 87.7%

Table 5: Results obtained by filtering all the 3740 annotations using different confidence thresholds.

tion schemes, CAC will also improve its performance.

The results of the three different sets of annotations show
that CAC is not biased toward proteins with a large num-
ber of similar curated proteins. In Figure 2, the results of
these sets were uniform over all the confidence thresholds.
The small differences are due to different precision values of
each original set. The Set 1 of under-annotated proteins has
the highest precision (7.5%) and the Set 3 of over-annotated
proteins has the lowest precision (5.8%). The Set 1 achieves
a precision of 100% for a recall larger than 20%, because
any correct annotation to under-annotated proteins is of in-
terest to curators, i.e., the problem of generic annotations
described above is not applicable to these proteins.

The results show that the performance obtained by a given
filter rate is preserved when applied to different sets of an-
notations. Therefore, curators can expect to obtain similar
performances in different sets of annotations by using simi-
lar filter rates. Using different sets of curated and uncurated
annotations may imply different CT for obtaining the same
filter rate. For example, the uncurated annotations in Set-3
have more similar curated annotations, thus it is also ex-
pected to have larger confidence scores. However, curators
can easily adjust CT to obtain a required filter rate.

CAC does not discard new knowledge, but it does not dis-
card the misannotations to under-annotated proteins either.
To measure the real impact of using CAC on the curation
process it should take into account the 455 novel annota-
tions. CAC never discards these annotations, leaving the
decision to the curator by assigning an infinite confidence
score to them. Table 5 shows that including these novel
annotations has a small effect on the performance of CAC.
For example, by using a filter rate of 41.7% (CT = 0.001)
the curator only has to verify 58.3% (100%-41.7%) of the
original annotations only loosing 3.1% (100%-96.9%) of the
correct annotations. However, the precision for large filter
rates is constrained by the precision of the novel annota-
tions. Since CAC does not discard any of the 455 novel an-
notations, the precision converges to 7% (32 out of 455 anno-
tations are correct) as CT increases. Nevertheless, CAC can
overcome this limitation and contribute toward adding new
knowledge. Nowadays, there are automated systems that
predict generic annotations with high precision. If these
generic annotations were considered, CAC would use them
to score specific annotations, which is what curators really
want. CAC can also be used to crosscheck annotations pre-
dicted by different automated systems. For example, CAC
can score annotations predicted by a text-mining system
based on annotations predicted by sequence similarity.

7. CONCLUSIONS
This paper proposed the use of curated associations as do-
main knowledge for scoring uncurated associations. To demon-
strate its feasibility and efficiency, we developed and eval-
uated CAC, which scores uncurated annotations based on
similar curated annotations. The results obtained in a re-
alistic scenario show that CAC can effectively be used to
speed up the curation process by discarding a large amount
of misannotations without loosing a significant amount of
correct annotations. Thus, CAC can be used by any auto-
mated annotation system to improve the accuracy and to
reduce the effort of curators. Its main advantage is that it
requires minimal human intervention, since CAC uses exten-
sive domain knowledge automatically collected from public
databases.

The precision/recall trade-off is tunable by a method’s con-
fidence threshold, which can be adjusted to obtain different
filter rates according to the curator’s requirements. The
results obtained by similar filter rates were consistent for
different subsets of the annotations, so the effectiveness of
CAC is predictable as we change a single tuning parameter.

One may argue that the proposed approach is only effective
when there is a substantial amount of curated information
available. However, the amount of curated information will
tend to increase as more genes are characterised, especially
for model organisms (e.g. human) whose characterisation
has a great fundamental economical and social impact. On
the other hand, the percentage of curated genes will tend
to decrease, since the manual characterisation efforts are
powerless to overcome the huge amount of data being gen-
erated by high-throughput analysis tools. Therefore, auto-
matic methods, such as CAC, are much required to help the
characterisation efforts.

CAC can be easily adapted to score associations between
other objects than genes and biological properties. All it
requires is a similarity measure for each kind of object used
and a set of curated associations.
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